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ABSTRACT 

In this article the formal process for the determination of the higher 
order perturbations of the elements is developed using the methods of Krylov- 
Bogoliubov and Poincare'. Such a development is necessary, for example, in 
the hrnarproblem where very high order perturbations have to be determined. 
Thedifferentialequations are formed for the elements which are affected only 
by the long period and the secular terms. The determination of these elements, 
as well as the elimination of the short period effects, is reduced to  the solving 
of a set of partial differential equations, step by step. By developing the dis- 
placement operator into a series of the differential operators of Faa de Bruno 
we  can write these equations in a concise form. 



ON THE HIGH ORDER EFFECTS IN THE METHODS OF 

KRYLOV-BOGOLIUBOV AND P O I N C ~  

INTRODUCTION 

In this article we develop the formalism for the determination of the general perturbations of 
higher orders in Celestial Mechanics by means of the method of Krylov-Bogoliubov (1961) and of 
the method of Poincare'(l892) and von Zeipel (1916). The solution of the problem is obtained in 
te rms  of the Krylov-Bogoliubov averaging operator, of Faa de Bruno differential operators (1855) 
and the integrating operator. 

- 

In the method of Krylov-Bogoliubov, as in the method of Poincare', the final goal is the elimi- 
nation of the short period effects and the derivation of the elements affected only by the long period 
and the secular perturbations. The original work of Krylov and Bogoliubov was influenced by the 
problems of Celestial Mechanics. If one looks closely at the method of LeVerrier (1856) of the 
general perturbations, he can easily recognize the same basic idea, but the method of Krylov and 
Bogoliubov achieved its fame under its present name because of its extensive application to  the  
problems of Theoretical Physics. In the majority of these problems, there is no need for the 
computation of the effects of higher orders. Normally, only the effects of the first and of the second 
orders, rarely of the third order, are computed. The standard presentation of the method does 
not go beyond these limits. This accuracy is insufficient from the standpoint of Celestial Mechanics. 
In the lunar problem, we must go up to  the perturbations of the ninth order with respect to  the 
ratio of mean motions of the satellite and of the sun, if we want to secure the necessary accuracy 
of the long period terms. 

Thus, the formalism of the Krylov-Bogoliubov method must be extended in order to cover such 
cases and especially to provide for the determination of the long period effects of higher orders. 
The long period and the secular effects are chiefly responsible for the behavior and stability of 
orbits of the celestial body and their accurate determination is of great importance. The positive 
characteristic of the method of Krylov and Bogoliubov is that the canonical form of equations of 
motion is not required and thus it is applicable to a much wider range of problems thanis the method 
of Poincare'. 

However, the number of the partial differential equations to be solved in the process of elimi- 
nation of the short period terms increases, as compared to  the method of Poincare'. It is the price 
we pay for the extension of the  domain of applicability. 

In the method of Poincare'the equations of motion have the canonical form and the problem of 
the elimination of the short period terms from the coordinates and the momenta is reduced to the 
elimination of such terms from the Hamiltonian by means of a properly chosen canonical trans- 
formation. Assuming that the characteristic function s of this transformation is developable into 
a power series with respect to  a small parameter, we reduce the determination of s to the solution 
of a chain of partial differential equations, step by step. Recently, Giacaglia (1964) has established 
the general form of these equations. 

* We show in this work, that the partial differential equations of the method by Poincare'take 
a specially concise form if written in terms of Faa de Bruno operators (1855). 
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THE HIGHER ORDER PERTURBATIONS IN KYRLOV-BOGOLIUBOV METHOD 

Let us consider the system of the vectorial differential equations 

where x ,  Y ,  H a r e  periodic in 
assumed to be developable in powers of a small parameter. We have 

and ,, with the period '2n in each component. These vectors are 

where the functions Xj , Y j  , Hi a r e  of the form 

where n and a re  vectors whose components are integers. 

The t e r m s  in (7) are: 

t h e  s h o r t  p e r i o d i c  i f  n # 0, 

t h e  l o n g  p e r i o d i c  i f  n = 0, bu t  v # O  

t h e  secular i f  n = 0 and v = 0 .  
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The averaging operator M performs the extraction of the long period and the secular terms from 
(7). Thus 

MF = F ~ , ~  (x) exp i v 0 ,  

V 

In addition to the Krylov-Bogoliubov operator M it is also convenient to make use of the operator P 
which performs the extraction of the short period terms only, 

In the further exposition we make use of the partial del-operators 

a a a  
ax ay a, 1 - 9  - - 

and introduce the partial differential equation of the form 

PF 
aY 

Evidently 

Introducing the integrating operator Q we can write 

Let us determine the transformation 

x = x* + a(x*;  y*, q*) 

y = y* + b(x*; y*, q*) 

'I = ,* + i3 (x*; y*, ,*) 

in such a way that the differential equations for the new variables 
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d x* 
dt 
- = x* (x*; - >  11*) 

- dl* =H*(x*; -, q*) 
dt 

do not contain the new short period argument ,,*. We put a dash in place of y* in order to emphasize 
its absence. 

We  shall determine the formal developments 

a =  a j ,  b = 2 b j ,  p = p j ,  
j = 1  j=l j=l 

in such a way that the equations (11) - (13) have the prescribed form. It follows from these equa- 
tions that the operator d/dt can be written in the form 

- = A ( x * ) - - - - ; - + D ,  d a 
aY dt 

where 

From (8) - (10) and (11) - (13) we have: 

&=x* + A a 7 + D a  aa 
dt aY 

* = A  tp + A . - + D b ,  a b  
dt aY* 

- dq = H *  +A*-- ap t D p .  
I aY dt 
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Introducing the displacement operator 

We can write (1) - (3) as 

- _  dq - (1 + T) H(x*; y*, q*). 
d t  

Comparing (16) - (18) with (19) - (21) and changing the notation we have 

a --= ap (H - H*) t (TH - Dp) 
a Y  

Making use of (14) we can represent 1 + T in the form 

where we put 

a a a 
ax ‘ a y  + p J  -G-- 6 .  = a j . - t b j  

The operators Tj are polynomials in 6,, 6 , ,  . . . They can be decomposed into the sums 

Tj = T j , k ,  
k’l 
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where Tj ,k  are  homogeneous of the degree k with respect to the 8 -operators. Making use of the 
expressions obtained by Faa de Bruno (1855) for the higher derivatives of a function depending upon 
another function, we obtain 

To = 1 

Tl.1 = 81 

T2,l = 82 

T2,2 =zS:, 1 

'3.1 = '3 

'3,2 = '1'2 

1 
120 

T5,5 = - 8: 
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b- 

T7,3 =- 1 6: 6, + 6, 6,  6 ,  +- 1 6, 6: +T8: 1 

T7,, =- 1 6: 6, +y 1 6: 6, 6, t X 6 ,  1 

6, 2 2 

6: 6 



The set  of operators T~ given here permits one to develop the general perturbations up to  the 
eighth order. The extension of the given table and the check computations can be performed using 
the general formulae 

ms = k,  f: s m  = j 
S'l s - 1  

Taking (15) into account we can wri te  the operator D as 

m 

D = D1, 
j = l  

where we put 

* a  * a  * a  
J J ax aY ' 2, 

D .  = X  . - + Y j . - + H : -  

, In order to abbreviate the writing we introduce the symbols 

j - 1  

L.rp = Tj-k T k  
k = l  

k z l . 2 ,  . e . ,  j - 1  

j = 2, 3, * . * -  

L , c p = O  A , c p = O ,  

representing the result of application of operators 

L. = [ T j - l ,  * , T , ,  0, 0, O - . . . ]  
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to  the decomposition of ‘p into ser ies  with respect to  the small parameter. 

From (4) - (6), (15), (22) - (241, (25) and (26) we deduce the set  of the partial differential 
equations 

and 

d y J J J  J 

For the effects of the first order we have 

a, =QP%, b, =QPY,,  p1 = QP H, 

Taking into account that the D, operators contain only the long period te rms  and that aj , b, , 
p j  contain only the short period terms, we conclude that 

contain no long period terms and thus, in order to avoid the secular terms in a, b , p , we have to  
Put 

Y f  = T, A t M Lj Y ,  

HT = M L j  H 
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It follows from (27) - (29) and (30) - (32): 

(33) a .  = QP(Xj t Lj X - hj a), 

b j  = QP(Yj + Lj Y - hj b), 

P j  = QP(Hj + Lj H - A j  P )  

(34) 

(35) 

Evidently the equations (30) - (35) answer the question as to how the long period terms will 
be formed in higher approximations in the Krylov-Bogoliubov method either directly or as a result 
of the "cross-action" of the short period effects. 

I These equations can be written in a somewhat simpler form if the series for X ,  Y and H are 
reduced to one term only. Then we have 

and the basic equations become 

XT =MT.  X ,  
1-1 

YT = T .  h + MTj-l Y, 

H* =MTj-l  H ,  

and 

a.  = QP (Tj-l X - A a ) ,  
j 

bj = QP (Tj-l Y - A j  b ) ,  

HIGHER ORDER PERTURBATIONS IN PO IN CAR^ AND VON ZEIPEL METHOD 

The introduction of the partial differential operators T j  and L, permits one also to  write 
the equations of the Poincare' and von Zeipel method in a very concise form. Let us consider the 
system of canonical equations: 
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We aSsume that the Hamiltonian F is developable in powers of a small parameter and has the 
form 

The functions F~ ( j = 1, 2, 3, . . .) are  periodic in y and q with the period 2n in each component, 

We shall determine a canonical transformation 

* as * as 
aY ax* 

x = x  t - ,  y = y + - - .  

as q * = q  + - ,  as 
ae* 

= g *  t=$ 

in such a way that the new Hamiltonian 

does not contain the short period argument y* . 
In other words, that condition 

is satisfied. 

Putting: 
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as 
K(x*, g*; y9 1) = - 

ag* ’ 

we write (38) as 

and 

we can write (39) in the form 

Let us define the operators 6, and 6; by means of the equations 

ask a ask a 
k ay ax a, ag 
6 = -  . - + -  .- 

Then we have, similarly as before, 

1 .+ T = exp 2 8, = 2 Ti, 
j-1 j P O  
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The operators T, are expressible in terms of sk7 and the operators T: in terms of s* by 
means of the formulae given in the previous section. Making use of (37), (381, (41), and (d) we 
obtain: 

or 

and 

Taking into account 

as, aFo 
T . F  = - * - + ( T j  - 6 , ) F 0 ,  

J O ay ax 

we can write the equation (43) as 

as, 
ay J J ’  

I - - + @ .  = F *  

where 

and 

* *  @. = F. + (T. - 8 , )  Fo .+ L, F - L, F . 
J J  

13 
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From the system of the linear partial differential equations (44) we can determine the functions 
sj and F: step by step. In order to  dispose of the secular t e rms  in s j  we have to  put 

then we obtain: 

The system of the transformed equations becomes 

dx* - aF* dy* - aF* 
+a* =O ,  - dt ax* d t  Y 

- _  

dg* aF* drl=-- * aF* - = + - ,  
dt a,,* dt a(* 

(45) 

(46) 

Besides the integral of energy the new system also possesses the integral 

x* = const. 

The system (46) can be integrated independently from the system (45) and after the integration 

A further reduction is possible if F* can be re-arranged in such a way that the order of the 
purely secular term is lower than the order of the periodic terms. By applying the process of 
elimination of the periodic terms again we can obtain the solution of the original problem in the 
form of a Fourier series with the arguments linear with respect to time. 

the angle y* can be obtained by aplain quadrature. 

Such a reduction is possible in the case of the artificial satellite of the Earth (Brouwer, 1959), 
but it is not always possible in the  lunar problem or in the stellar three body problem. If the close 
companion (the lunar orbiter) is moving in a highly eccentric orbit and the osculating plane has 
a high inclination toward the orbital plane of the distant comparison (Brown, 1936), then the solution 
in form of trigonometric series generally speaking cannot be obtained. 

CONCLUSION 

The method of Krylov and Bogoliubov does not presuppose that the forces must be conservative. 
Thus, the importance and the generality of this method a re  quite evident. The system of the dif- 
ferential operators and the algorithm given here permit the computation of the higher order effects 
up to any order. The process is formal and from the standpoint of pure mathematics might suffer, 
like all astronomical theories do, from the presence of small divisors. 

Recently, the method of Krylov and Bogoliubov w& successfully applied by Struble (1961) and 
by Kyner (1965) to  the problem of motion of the artificial satellite. The author of the present paper 
has applied it to the problem of the motion of a lunar orbiter. The exposition of his results will 
appear in a later article. 
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